Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract A model based on a$$U(1)_{T^3_R}$$ extension of the Standard Model can address the mass hierarchy between generations of fermions, explain thermal dark matter abundance, and the muon$$g - 2$$ ,$$R_{(D)}$$ , and$$R_{(D^*)}$$ anomalies. The model contains a light scalar boson$$\phi '$$ and a heavy vector-like quark$$\chi _\textrm{u}$$ that can be probed at CERN’s large hadron collider (LHC). We perform a phenomenology study on the production of$$\phi '$$ and$${\chi }_u$$ particles from proton–proton$$(\textrm{pp})$$ collisions at the LHC at$$\sqrt{s}=13.6$$ TeV, primarily through$$g{-g}$$ and$$t{-\chi _\textrm{u}}$$ fusion. We work under a simplified model approach and directly take the$$\chi _\textrm{u}$$ and$$\phi '$$ masses as free parameters. We perform a phenomenological analysis considering$$\chi _\textrm{u}$$ final states to b-quarks, muons, and neutrinos, and$$\phi '$$ decays to$$\mu ^+\mu ^-$$ . A machine learning algorithm is used to maximize the signal sensitivity, considering an integrated luminosity of 3000$$\text {fb}^{-1}$$ . The proposed methodology can be a key mode for discovery over a large mass range, including low masses, traditionally considered difficult due to experimental constraints.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            A<sc>bstract</sc> We present a detailed study concerning a new physics scenario involving four fermion operators of the Nambu-Jona-Lasinio type characterized by a strong-coupling ultraviolet fixed point where composite particles are formed as bound states of elementary fermions at the scale$$ \Lambda =\mathcal{O}\left(\textrm{TeV}\right) $$ . After implementing the model in the Universal FeynRules Output format, we focus on the phenomenology of the scalar leptoquarks at the LHC and the High-Luminosity option. Leptoquark particles have undergone extensive scrutiny in the literature and experimental searches, primarily relying on pair production and, more recently, incorporating single, Drell-Yan t-channel, and lepton-induced processes. This study marks, for the first time, the examination of these production modes at varying jet multiplicities. Novel mechanisms emerge, enhancing the total production cross section. A global strategy is devised to capture all final state particles produced in association with leptoquarks or originating from their decay, which we termed “exclusive”, in an analogy to the nomenclature used in nuclear reactions. The assessment of the significance in current and future LHC runs, focusing on the case of a leptoquark coupling to a muon–cquark pair, reveals greater sensitivity compared to ongoing searches. Given this heightened discovery potential, we advocate the incorporation of exclusive leptoquark searches in future investigations at the LHC.more » « less
- 
            Abstract Leptoquarks ($$\textrm{LQ}$$ s) are hypothetical particles that appear in various extensions of the Standard Model (SM), that can explain observed differences between SM theory predictions and experimental results. The production of these particles has been widely studied at various experiments, most recently at the Large Hadron Collider (LHC), and stringent bounds have been placed on their masses and couplings, assuming the simplest beyond-SM (BSM) hypotheses. However, the limits are significantly weaker for$$\textrm{LQ}$$ models with family non-universal couplings containing enhanced couplings to third-generation fermions. We present a new study on the production of a$$\textrm{LQ}$$ at the LHC, with preferential couplings to third-generation fermions, considering proton-proton collisions at$$\sqrt{s} = 13 \, \textrm{TeV}$$ and$$\sqrt{s} = 13.6 \, \textrm{TeV}$$ . Such a hypothesis is well motivated theoretically and it can explain the recent anomalies in the precision measurements of$$\textrm{B}$$ -meson decay rates, specifically the$$R_{D^{(*)}}$$ ratios. Under a simplified model where the$$\textrm{LQ}$$ masses and couplings are free parameters, we focus on cases where the$$\textrm{LQ}$$ decays to a$$\tau $$ lepton and a$$\textrm{b}$$ quark, and study how the results are affected by different assumptions about chiral currents and interference effects with other BSM processes with the same final states, such as diagrams with a heavy vector boson,$$\textrm{Z}^{\prime }$$ . The analysis is performed using machine learning techniques, resulting in an increased discovery reach at the LHC, allowing us to probe new physics phase space which addresses the$$\textrm{B}$$ -meson anomalies, for$$\textrm{LQ}$$ masses up to$$5.00\, \textrm{TeV}$$ , for the high luminosity LHC scenario.more » « less
- 
            Abstract Despite the f0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ ) meson, a tetraquark ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ ) exotic state, a kaon-antikaon ($${{\rm{K}}}\overline{{{\rm{K}}}}$$ ) molecule, or a quark-antiquark-gluon ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ ) hybrid. This paper reports strong evidence that the f0(980) state is an ordinary$${{\rm{q}}}\overline{{{\rm{q}}}}$$ meson, inferred from the scaling of elliptic anisotropies (v2) with the number of constituent quarks (nq), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0(980) state is reconstructed via its dominant decay channel f0(980) →π+π−, in proton-lead collisions recorded by the CMS experiment at the LHC, and itsv2is measured as a function of transverse momentum (pT). It is found that thenq= 2 ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ state) hypothesis is favored overnq= 4 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ or$${{\rm{K}}}\overline{{{\rm{K}}}}$$ states) by 7.7, 6.3, or 3.1 standard deviations in thepT< 10, 8, or 6 GeV/cranges, respectively, and overnq= 3 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ hybrid state) by 3.5 standard deviations in thepT< 8 GeV/crange. This result represents the first determination of the quark content of the f0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates.more » « lessFree, publicly-accessible full text available December 1, 2026
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            A<sc>bstract</sc> Inclusive and differential cross sections for Higgs boson production in proton-proton collisions at a centre-of-mass energy of 13.6 TeV are measured using data collected with the CMS detector at the LHC in 2022, corresponding to an integrated luminosity of 34.7 fb−1. Events with the diphoton final state are selected, and the measured inclusive fiducial cross section is$${\sigma }_{\text{fid}}={74}\pm {11}{\left({\text{stat}}\right)}_{-4}^{+5}\left({\text{syst}}\right)$$fb, in agreement with the standard model prediction of 67.8 ± 3.8 fb. Differential cross sections are measured as functions of several observables: the Higgs boson transverse momentum and rapidity, the number of associated jets, and the transverse momentum of the leading jet in the event. Within the uncertainties, the differential cross sections agree with the standard model predictions.more » « lessFree, publicly-accessible full text available September 1, 2026
- 
            Incoherent photoproduction in heavy ion ultraperipheral collisions (UPCs) provides a sensitive probe of localized, fluctuating gluonic structures within heavy nuclei. This Letter reports the first measurement of the photon-nucleon center-of-mass energy ( ) dependence of this process in PbPb UPCs at a nucleon-nucleon center-of-mass energy of 5.02 TeV, using of data recorded by the CMS experiment. The measurement covers a wide range of , probing gluons carrying a fraction of nucleon momentum down to an unexplored regime of . Compared to baseline predictions neglecting nuclear effects, the measured cross sections exhibit significantly greater suppression at lower . Additionally, the ratio of incoherent to coherent photoproduction is found to be constant across the probed and range, disfavoring the establishment of the black disk limit. This Letter provides critical insights into the -dependent evolution of fluctuating gluonic structures within nuclei and calls for further advancements in theoretical models incorporating nuclear shadowing and gluon saturation.more » « lessFree, publicly-accessible full text available September 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
